lunes, 28 de julio de 2008

DIODOS

Un diodo (del griego "dos caminos") es un dispositivo semiconductor que permite el paso de la corriente eléctrica en una única dirección con caracteristicas similares a un interruptor. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un corto circuito con muy pequeña resistencia eléctrica.

TRANSFORMADORES

Se denomina transformador a una máquina eléctrica que permite aumentar o disminuir el voltaje o tensión en un circuito eléctrico de corriente alterna , manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal, esto es, sin pérdidas, es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.
Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de
hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.









Funcionamiento

Representación esquemática del transformador.
Si se aplica una
fuerza electromotriz alterna en el devanado primario, las variaciones de intensidad y sentido de la corriente alterna crearán un campo magnético variable dependiendo de la frecuencia de la corriente. Este campo magnético variable originará, por inducción electromagnética
, la aparición de una fuerza electromotriz en los extremos del devanado secundario.
La relación entre la fuerza electromotriz inductora (Ep), la aplicada al devanado primario y la fuerza electromotriz inducida (Es), la obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns) .

Tipos de transformadores

Transformador trifásico. Conexión estrella-triángulo.

Según sus aplicaciones
Transformador elevador/reductor de tensión
Son empleados en las subestaciones de la red de transporte de energía eléctrica, con el fin de disminuir las pérdidas por efecto Joule . Debido a la resistencia de los conductores, conviene transportar la energía eléctrica a tensiones elevadas, siendo necesario reducir nuevamente dichas tensiones para adaptarlas a las de utilización.
Transformador de aislamiento
Proporciona aislamiento galvánico entre el primario y el secundario, de manera que consigue una alimentación o señal "flotante". Suele tener una relación 1:1. Se utiliza principalmente como medida de protección, en equipos que trabajan directamente con la tensión de red. También para acoplar señales procedentes de sensores lejanos, en equipos de electromedicina y allí donde se necesitan tensiones flotantes entre sí.
Transformador de alimentación
Pueden tener una o varias bobinas secundarias y proporcionan las tensiones necesarias para el funcionamiento del equipo. A veces incorporan fusibles que cortan su circuito primario cuando el transformador alcanza una temperatura excesiva, evitando que éste se queme, con la emisión de humos y gases que conlleva e, incluso, riesgo de incendio. Estos fusibles no suelen ser reemplazables, de modo que hay que sustituir todo el transformador.
Transformador de pulsos
Es un tipo especial de transformador con respuesta muy rápida (baja autoinducción) destinado a funcionar en régimen de pulsos.
Transformador de línea o flyback
Es un caso particular de transformador de pulsos. Se emplea en los televisores con TRC (CRT) para generar la alta tensión y la corriente para las bobinas de deflexión horizontal
. Además suele proporcionar otras tensiones para el tubo (Foco, filamento, etc).
Transformador con diodo dividido
Es un tipo de transformador de línea que incorpora el diodo
rectificador para proporcionar la tensión contínua de MAT directamente al tubo. Se llama diodo dividido porque está formado por varios diodos más pequeños repartidos por el bobinado y conectados en serie, de modo que cada diodo sólo tiene que soportar una tensión inversa relativamente baja. La salida del transformador va directamente al ánodo del tubo, sin diodo ni triplicador.
Transformador de impedancia
Este tipo de transformador se emplea para adaptar antenas y líneas de transmisión (tarjetas de red, teléfonos...) y era imprescindible en los amplificadores de válvulas para adaptar la alta impedancia
de los tubos a la baja de los altavoces. Si se coloca en el secundario una impedancia de valor Z, y llamamos n a Ns/Np, como Is=-Ip/n y Es=Ep.n, la impedancia vista desde el primario será Ep/Ip = -Es/n²Is = Z/n². Así, hemos conseguido transformar una impedancia de valor Z en otra de Z/n². Colocando el transformador al revés, lo que hacemos es elevar la impedancia en un factor n².
Estabilizador de tensión
Es un tipo especial de transformador en el que el núcleo se satura cuando la tensión en el primario excede su valor nominal. Entonces, las variaciones de tensión en el secundario quedan limitadas. Tenía una labor de protección de los equipos frente a fluctuaciones de la red. Este tipo de transformador ha caído en desuso
con el desarrollo de los reguladores de tensión electrónicos, debido a su volumen, peso


martes, 22 de julio de 2008

ELECTRICIDAD










Electricidad
· La electricidad es una forma de energía que tiene dos ventajas principales sobre las demás formas de energía, una de ellas es que se transporta fácilmente y sin perdidas de energías y la otra es que se trasforma fácilmente en cualquier otro tipo de energía y viceversa.
· Todos los cuerpos están formados por pequeñas partículas llamadas átomos. El átomo esta formado por un núcleo y una capa externa. El núcleo está formado por partículas, unas llamadas protones con carga positiva y otras llamadas neutrones sin carga eléctrica. La capa exterior está formada por electrones con carga negativa y casi sin masa. El átomo puede ganar o perder electrones fácilmente.
· Corriente eléctrica: circulación de electrones a trabes de un cuerpo.

o corriente continua de 0W a 24W.
o Elementos de control: son los que controlan la circulación de la corriente eléctrica en un circuito.
§ Interruptor:
es un elemento con dos estados estables, uno de apertura del circuito y otro de cierre.
§ Pulsador: también sirve para abrir o cerrar el circuito eléctrico, pero solo tiene un estado estable. Hay pulsadores normalmente abierto que solo deja pasar la corriente durante el tiempo que permanece pulsado. Y hay otros pulsadores cerrados que funcionan al revés.
§ Conmutador de dos posiciones: tiene dos posiciones estables, en una posición conecta una parte del circuito y en la otra, otra parte del circuito.
§ Llave de cruce: es un conmutador de cuatro polos que se conectan dos a dos. Se utiliza para cambiar el sentido de giro de los motores de corriente continua.
§ Relé: es un interruptor que en lugar de estar accionado normalmente se acciona mediante el paso de corriente eléctrica.
§ Final de carrera: es un interruptor que se acciona mecánicamente debido al movimiento de algunas piezas.
§ Elementos conductores: son cables formados por materiales conductores ( cobre, aluminio, ... ), y llevan recubrimientos aislantes ( plásticos, vidrios, .)
§ Elementos receptores: son aquellos que consumen energía eléctrica trasformándola en otro tipo de energía ( timbre, bombilla, ... )
§ Elementos de protección: hay dos tipos de elementos de protección: elementos que protegen al circuito eléctrico y otros los elementos que protegen a las personas. Los principales accidentes que pueden ocurrir en un circuito son: el cortocircuito y la sobre tensión.
§ Cortocircuito: ocurre cuando la resistencia del circuito se reduce a 0 en algún punto del circuito ( al unir dos cables ), por lo que la intensidad se hace excesivamente grande, que quema el conductor por su parte mas débil.
§ Sobrecarga: se produce cuando tenemos en el circuito una tensión algo mayor a la normal durante un determinado tiempo.

§ Elementos que protegen al circuito:
§ El fusible: consiste en un hilo fino insertado en un circuito para que sea la parte mas débil, consiguiendo así que cuando venga una corriente elevada el hilo se funda y abra el circuito.
§ Interruptor automático: es el que esta en nuestras casas. Realiza el mismo efecto que el fusible pero de modo automático, aprovechando el efecto magnético de la corriente.
§ Elementos que protegen a las personas:
§ Interruptor diferencial: se parece al automático. Es un aparato que detecta las fugas de corriente y abre el circuito, esta basado en el campo magnético que crea un conductor eléctrico arrollado a un núcleo magnético. Protege a las personas de la electrocución por contacto con alguna parte del circuito ( sobre todo carcasas de electrodomésticos ). Se sitúa a la entrada de las viviendas.
§ Toma de tierra: la protección por toma de tierra es la unión mediante conductores de todas las partes metálicas de una instalación que no están destinadas a la conducción eléctrica.
§ Unidades y magnitudes eléctricas:
§ Intensidad de corriente ( I ): es la cantidad de electrones que pasan en un segundo por un punto del circuito. Su unidad es el amperio ( A ).
§ Tensión ( V o U ): cuando los electrones circulan entre dos puntos de un circuito eléctrico, su deslazamiento es posible gracias a la diferencia de cargas ( positivas y negativas ) que hay entre esos dos puntos. Esta diferencia de cargas se le llama tensión eléctrica. Su unidad es el voltio
( v ).
§ Resistencia eléctrica ( R ): es la oposición que presentan todos los cuerpos al paso de la corriente eléctrica. Su unidad es el ohmio ( _ ). Dependiendo de esa oposición al paso de la corriente eléctrica puede haber materiales conductores, aislantes y semiconductores.
§ Ley de Ohm: es una ley que relaciona las tres magnitudes principales de un circuito eléctrico ( I, V y R ). Formulas: V= I . R, I= V ÷ R,
R= V÷ I .
§ Potencia y energía eléctrica: la potencia eléctrica es la cantidad de energía eléctrica suministrada o consumida por unidad de tiempo. Indica la rapidez con que se gasta la energía. Su símbolo es ( P ) y su unidad es el vatio ( W ). Se calcula con estas formulas:
P = V . I ; P = V² ÷ R ; P = I² . R
La energía eléctrica es el producto de la potencia por el tiempo ( E ).
E = P . T
§ Tipos de conexión: en un circuito eléctrico los elementos se pueden conectar de tres formas: en serie, paralelo o mixto.
Formulas:
Conexión en serie:
Rt = R¹ + R² + R³ …
Vt = V¹ + V² + V³ …
It = I¹ = I² = I³ …
Conexión en paralelo:
Rt = R¹ . R² ÷ R¹ + R²

Vt = V¹ = V² …
RESISTENCIAS
Propiedad de un objeto o sustancia que hace que se resista u oponga al paso de una corriente eléctrica. La resistencia de un circuito eléctrico determina según la llamada ley de Ohm cuánta corriente fluye en el circuito cuando se le aplica un voltaje determinado. La unidad de resistencia es el ohmio, que es la resistencia de un conductor si es recorrido por una corriente de un amperio cuando se le aplica una tensión de 1 voltio. La abreviatura habitual para la resistencia eléctrica es R, y el símbolo del ohmio es la letra griega omega, Ω. En algunos cαlculos eléctricos se emplea el inverso de la resistencia, 1/R, que se denomina conductancia y se representa por G. La unidad de conductancia es siemens, cuyo símbolo es S. Aún puede encontrarse en ciertas obras la denominación antigua de esta unidad, mho.



El condensador
Es uno de los componentes mas utilizados en los circuitos eléctricos.
Un condensador es un componente pasivo que presenta la cualidad de almacenar energía eléctrica. Esta formado por dos laminas de material conductor (metal) que se encuentran separados por un material dieléctrico (material aislante). En un condensador simple, cualquiera sea su aspecto exterior, dispondrá de dos terminales, los cuales a su vez están conectados a las dos laminas conductoras.




TRANSFORMADOR

Dispositivo eléctrico que consta de una bobina de cable situada junto a una o varias bobinas más, y que se utiliza para unir dos o más circuitos de corriente alterna (CA) aprovechando el efecto de inducción entre las bobinas. La bobina conectada a la fuente de energía se llama bobina primaria. Las demás bobinas reciben el nombre de bobinas secundarias. Un transformador cuyo voltaje secundario sea superior al primario se llama transformador elevador. Si el voltaje secundario es inferior al primario este dispositivo recibe el nombre de transformador reductor. El producto de intensidad de corriente por voltaje es constante en cada juego de bobinas, de forma que en un transformador elevador el aumento de voltaje de la bobina secundaria viene acompañado por la correspondiente disminución de corriente. La cantidad de terminales varía según cuantos bobinados y tomas tenga. Como mínimo son tres para los auto- transformadores y cuatro en adelante para los transformadores. No tienen polaridad aunque si orientación magnética de los bobinados




DIODO
Componente electrónico que permite el paso de la corriente en un solo sentido. Los primeros dispositivos de este tipo fueron los diodos de tubo de vacío, que consistían en un receptáculo de vidrio o de acero al vacío que contenía dos electrodos: un cátodo y un ánodo. Ya que los electrones pueden fluir en un solo sentido, desde el cátodo hacia el ánodo, el diodo de tubo de vacío se podía utilizar en la rectificación. Los diodos más empleados en los circuitos electrónicos actuales son los diodos fabricados con material semiconductor. El más sencillo, el diodo con punto de contacto de germanio, se creó en los primeros días de la radio, cuando la señal radiofónica se detectaba mediante un cristal de germanio y un cable fino terminado en punta y apoyado sobre él. En los diodos de germanio (o de silicio) modernos, el cable y una minúscula placa de cristal van montados dentro de un pequeño tubo de vidrio y conectados a dos cables que se sueldan a los extremos del tubo.


BOBINA
Las bobinas (también llamadas inductores) consisten en un hilo conductor enrollado. Al pasar una corriente a través de la bobina, alrededor de la misma se crea un campo magnético que tiende a oponerse a los cambios bruscos de la intensidad de la corriente. Al igual que un condensador, una bobina puede utilizarse para diferenciar entre señales rápida y lentamente cambiantes (altas y bajas frecuencias). Al utilizar una bobina conjuntamente con un condensador, la tensión de la bobina alcanza un valor máximo a una frecuencia específica que depende de la capacitancia y de la inductancia. Este principio se emplea en los receptores de radio al seleccionar una frecuencia específica mediante un condensador variable.



TRANSISTORES
Los transistores se componen de semiconductores. Se trata de materiales, como el silicio o el germanio, dopados (es decir, se les han incrustado pequeñas cantidades de materias extrañas), de manera que se produce un exceso o una carencia de electrones libres. En el primer caso, se dice que el semiconductor es del tipo n, y en el segundo, que es del tipo p. Combinando materiales del tipo n y del tipo p se puede producir un diodo. Cuando éste se conecta a una batería de manera tal que el material tipo p es positivo y el material tipo n es negativo, los electrones son repelidos desde el terminal negativo de la batería y pasan, sin ningún obstáculo, a la región p, que carece de electrones. Con la batería invertida, los electrones que llegan al material p pueden pasar sólo con muchas dificultades hacia el material n, que ya está lleno de electrones libres, en cuyo caso la corriente es prácticamente cero.



CIRCUITOS INTEGRADOS
La mayoría de los circuitos integrados son pequeños trozos, o chips, de silicio, de entre 2 y 4 mm2, sobre los que se fabrican los transistores. La fotolitografía permite al diseñador crear centenares de miles de transistores en un solo chip situando de forma adecuada las numerosas regiones tipo n y p. Durante la fabricación, estas regiones son interconectadas mediante conductores minúsculos, a fin de producir circuitos especializados complejos. Estos circuitos integrados son llamados monolíticos por estar fabricados sobre un único cristal de silicio. Los chips requieren mucho menos espacio y potencia, y su fabricación es más barata que la de un circuito equivalente compuesto por transistores individuales.