viernes, 29 de agosto de 2008

BARRIDO VERTICAL

El circuito de Barrido Vertical es el encargado de hacer que el haz de electrones se desplace en sentido vertical, es decir de arriba hasta la parte inferior de la pantalla.
Por lo tanto es quien debe hacer circular una corriente por los devanados que forman la sección del yugo vertical de modo tal que influya con su campo magnético en el haz electrónico dentro de la pantalla, o haces electrónicos si se trata de una Pantalla a color.
Es de vital importancia que como este circuito es quien nos dibuja las 525 líneas horizontales en asocio con el circuito Horizontal, estas líneas deben tener la misma separación entre líneas (Linealidad Vertical), para que la imagen se reproduzca sin deformaciones; por lo tanto la corriente que circule por el Yugo Vertical debe tener una característica especial.
Esta señal la genera o crea un circuito que se llama Oscilador Vertical, pero antes de conocer como se crea vamos a centrarnos primero en la parte que maneja la Potencia, que es una de las que mas falla.
La etapa de salida vertical mas usada en lo TV no tan nuevos es la que contiene dos Transistores de Potencia por lo general Caso 375 que trabajan en montaje Push-Pull lo que significa que cuando el uno conduce el otro se apaga y eso se logra con dos señales simultáneas generadas en el Oscilador Vertical.








En este circuito tenemos los dos transistores identificados como Q501 y Q502. Q501 es el encargado de "Cargar " el C520 pasando su corriente por el Yugo Vertical; cuando el C520 comienza su carga se crea un campo magnético en el Yugo que hace que el Haz se ubique en la parte superior de la pantalla.
A medida que el C520 se carga, su corriente va disminuyendo lo mismo que su campo magnético y eso resulta en que el haz con el tiempo vaya bajando buscando el centro o punto de reposo.
Pasado determinado tiempo y cuando el haz está en el centro de la pantalla en sentido horizontal; por la señal generada en el Oscilador y Driver vertical hace que el Q501 que inicialmente estaba en conducción o activo, deje de hacerlo y active el Q502.
Al conducir el Q502 (recuerde que la estructura electrónica es tal que cuando el Q501 conduce el Q502 se corta y viceversa ) el Q501 deja de cargar el C520, pero al conducir el Q502 el C520 comienza a descargarse. Eso implica que la corriente en el Yugo cambia de dirección, por lo tanto el campo magnético tambien cambia y eso hace que el haz se vaya del centro hacia la parte inferior de la pantalla. De ese modo se completa el "llenado" de la pantalla.

Como bien sabemos una ves llegado el haz a la parte inferior de la pantalla, este debe subir a la parte superior izquierda de la pantalla.
Eso lo hace mediante suspender de manera "brusca" o intempestiva la corriente que este fluyendo por el Yugo.
Esto se logra cuando el Q502 suspende la "descarga" total del C520. Bien sabemos que cuando se suspende el fluido eléctrico en un devanado la reacción natural es que este autogenere un pico de voltaje; ese pico generado en el Yugo se encarga de subir el haz al la parte superior de la pantalla y para ese mismo instante el Q501 ya ha comenzado a "cargar" de nuevo el C520, comenzando un nuevo ciclo de trabajo, que se repite 59,94 Hz.
Estas señales que tenemos en la siguiente figura nos ayuda a entender lo que hemos explicado. Observe como la forma de onda es tal, que medio ciclo influye en el Q502 ("ON" o en conducción) mientras que el Q501 esta "OFF" o apagado. El otro medio ciclo restante es el encargado de invertir el funcionamiento de los transistores.

jueves, 21 de agosto de 2008

CONECTOR VGA



Un conector VGA como se le conoce comúnmente (otros nombres incluyen conector RGB, D-sub 15, sub mini mini D15 y D15), de tres hileras de 15 pines DE-15. Hay cuatro versiones: original, DDC2, el más antiguo y menos flexible DE-9, y un Mini-VGA utilizados para computadoras portátiles. El conector común de 15 pines se encuentra en la mayoría de las tarjetas de vídeo, monitores de computadoras, y otros dispositivos, es casi universalmente llamado "HD-15". HD es de "alta densidad", que la distingue de los conectores que tienen el mismo factor de forma, pero sólo en 2 filas de pines. Sin embargo, este conector es a menudo erróneamente denominado DB-15 o HDB-15. Los conectores VGA y su correspondiente cableado casi siempre son utilizados exclusivamente para transportar componentes analógicos RGBHV (rojo - verde - azul - sincronización horizontal - sincronización vertical), junto con señales de vídeo DDC2 reloj digital y datos. En caso de que el tamaño sea una limitación (como portátiles) un puerto mini-VGA puede figurar en ocasiones en lugar de las de tamaño completo conector VGA.





martes, 12 de agosto de 2008

CRT

El monitor o pantalla de computadora, aunque también es común llamarle "pantalla", es un dispositivo de salida que, mediante una interfaz, muestra los resultados del procesamiento.





Tipos de monitores


Podemos encontrar varios tipos de monitores:
• CRT (Cathode Ray Tube o tubo de Rayos Catódicos): constituido por un tubo de rayos catódicos semejante a los de un aparato de televisión
• LCD (Liquid Crystal Display, o pantallas de cristal líquido): utilizada en la mayor parte de los relojes digitales, calculadoras y en los primeros ordenadores portátiles. No tienen tanto contraste como los CRT.
• TFT (Thin Film Transistor, o Transistor de Capa Fina): Ofrecen mayores prestaciones en cuanto a color, contraste, ángulo de visión y tiempo de respuesta que los LCD.


Funcionamiento

CRT:Su tubo de rayos catódicos (CRT) emite un haz de electrones que bombardea el revestimiento de fósforo que recubre la superficie interior de la pantalla, colocándose sobre cada pixel (elemento gráfico) para que éstos brillen.
El haz hace un barrido en horizontal y vertical, provocando un rastro de luz de intensidad variable modulado por los datos numéricos interpretados desde el ordenador.
En el monitor a color, el CRT emite tres haces de electrones, rojo verde y azul RVA],que inciden sobre cada píxel de la pantalla para componer las variables cromáticas de la imagen,



Ventajas de las pantallas
CRT:
Permiten reproducir una mayor variedad cromática.
Distintas resoluciones se pueden ajustar al monitor.
En los monitores de apertura de rejilla no hay moire vertical.
Desventajas de las pantallas
CRT:
Ocupan más espacio (cuanto mas fondo, mejor geometría).
Los modelos antiguos tienen la pantalla curva.
Los campos eléctricos afectan al monitor (la imagen vibra).
Para disfrutar de una buena imagen necesitan ajustes por parte del usuario.
En los monitores de apertura de rejilla se pueden apreciar varias líneas de tensión muy finas y difíciles de apreciar que cruzan la pantalla horizontalmente, se pueden apreciar con fondo blanco.

Datos técnicos, comparativos entre sí:
En los CRT, la frecuencia de refresco es la que tiene la tarjeta grafica, en los LCD no siempre es la que se le manda
Los CRT pueden tener modo progresivo y entrelazado, los LCD tiene otro metodo de representación.
En los CRT se pierde aproximadamente 1 pulgada del tamaño, que se utiliza para la sujeccion del tubo, en los CRT es prácticamente lo que ocupa el LCD.
El peso de un LCD se ve incrementado por la peana para darle estabilidad, pero el monitor en sí no pesa prácticamente nada.
Los LCD suelen necesitar de un transformador externo al monitor, en los CRT toda la electrónica va dentro del monitor.
En los LCD el consumo es menor, y la tension de utilización por parte de la electrónica también.
En los CRT pueden aparecer problemas de "quemar" el fosforo de la pantalla, esto ocurre al dejar una imagen fija durante mucho tiempo, como la palabra "insert coin" en las recreativas, en los LCD los problemas pueden ser de píxeles defectuosos (siempre encendido o, siempre apagado), aparte de otros daños.
El parpadeo de ambos tipos de pantallas es debido a la baja frecuencia de refresco, unido a la persistencia del brillo del fosforo, y a la memoria de cada píxel en un CRT y LCD respectivamente, que mitigan este defecto.
Con baja velocidad de refresco y un tiempo grande de persistencia del fósforo, no hay parpadeo, pero si la persistencia del fosforo es baja y el refresco es bajo, se produce este problema. Sin emabargo esto puede causar un efecto de desvanecimiento o visión borrosa, al permanecer aún encendido un punto, en el siguiente refresco de la pantalla.

Clases de monitores
Los monitores se pueden clasificar por:Por el número de colores:
Monitor Monocromático (Un solo color)
Monitor Policromático (a colores)


Por el tipo de señal a visualizar:
1.- Monitores digitales:
Monocromático
CGA
EGA

2.- Monitores Analógicos:
Multifrecuencia
Frecuencia fija
VGA


Tipos de monitores por resolución:

TTL: Solo se ve texto, generalmente son verdes o ámbar.


CGA: Son de 4 colores máximo o ámbar o verde, son los primeros gráficos con una resolución de 200x400 hasta 400x600.




EGA: Monitores a colores 16 máximo o tonos de gris, con resoluciones de 400x600,
600x800.


VGA: Monitores a colores de 32 bits de color verdadero o en tono de gris, soporta
600x800, 800x120



SVGA: Conocido como súper VGA q incrementa la resolución y la cantidad de colores de 32 a 64 bits de color verdadero, 600x400 a 1600x1800.




UVGA: No varia mucho del súper VGA, solo incrementa la resolución a 1800x1200.



XGA: Son monitores de alta resolución, especiales para diseño, su capacidad grafica es muy buena. Además la cantidad de colores es mayor.


DIGITALES:Estos monitores reciben datos a través de un conector de 9 pines. Cada pin conduce un tipo diferente de señal. Las señales incluyen al rojo, verde y azul, rojo secundario, verde secundario, azul secundario, la sincronización horizontal, vertical y tierra.Las señales son transmitidas en dos estados on y off. Los monitores digitales de cañón standard tiene 3 cañones electrónicos en la parte anterior de la pantalla. Estos cañones son llamados rojo, verde y azul y emiten electrones sobre la pantalla.Cada cañón dispara solo en los puntos de un cañón particular. Cada cañón responde a las señales enviadas a uno o dos pines del jack conector del monitor. Cuando una señal se transmite al pin rojo, el cañón rojo dispara al fósforo rojo de la pantalla y el punto se ilumina.La intensidad de luz emitida por el fósforo, es interpretada por el ojo humano y por el cerebro, es directamente proporcional al número de electrones que impactan sobre el punto rojo.Cuando el monitor está encendido a cada punto se encuentra en uno de tres estados: On, off o on intenso. Estos monitores visualizan un número fijo de colores. La señal standard off lleva un voltaje de 0 a 0.8v. La señal de on lleva un voltaje de 0.8 a 3.5v Los voltajes son dependientes del monitor en particular. El mayor número de colores de estos monitores que se pueden visualizar son de 64. Esto es impuesto por el diseño del monitor, no por el adaptador del monitor.

ANALOGICOS:Estos monitores reciben datos a través de un conector de 15 pines. Cada pin lleva señales diferentes. Las señales incluyen al rojo, verde, azul señales de monitor cero, uno y dos, sincronización horizontal, vertical y tierra.

Parámetros de una pantalla


Píxel: Unidad mínima representable en un monitor.
Tamaño de punto o (dot pitch): El tamaño de punto es el espacio entre dos fósforos coloreados de un pixel. Es un parámetro que mide la nitidez de la imagen, midiendo la distancia entre dos puntos del mismo color; resulta fundamental a grandes resoluciones. Los tamaños de punto más pequeños producen imágenes más uniformes. Un monitor de 14
pulgadas suele tener un tamaño de punto de 0,28 mm o menos. En ocasiones es diferente en vertical que en horizontal, o se trata de un valor medio, dependiendo de la disposición particular de los puntos de color en la pantalla, así como del tipo de rejilla empleada para dirigir los haces de electrones. En LCD y en CRT de apertura de rejilla, es la distancia en horizontal, mientras que en los CRT de máscara de sombra, se mide casi en diagonal. Lo mínimo exigible en este momento es que sea de 0,28mm. Para CAD
o en general para diseño, lo ideal sería de 0,25mm o menos. 0,21 en máscara de sombra es el equivalente a 0.24 en apertura de rejilla.
Área Útil: El tamaño de la pantalla no coincide con el área real que se utiliza para representar los datos.
Resolución máxima: es la resolución maxima o nativa (y única) en el caso de los LCD que es capaz de representar el monitor, esta relacionada con el tamaño de la pantalla y el tamaño del punto
Tamaño de la pantalla: Es la distancia en diagonal de un vértice de la pantalla al opuesto, que puede ser distinto del área visible.
Ancho de banda: Frecuencia máxima que es capaz de soportar el monitor
Hz o frecuencia de refresco vertical: son 2 valores entre los cuales el monitor es capaz de mostrar imágenes estables en la pantalla.
Hz o frecuencia de refresco horizontal : similar al anterior pero en sentido horizontal, para dibujar cada una de las líneas de la pantalla.
Blindaje: Un monitor puede o no estar blindando ante interferencias electricas externas y ser más o menos sensible a ellas, por lo que en caso de estar blindando, o semiblindado por la parte trasera llevara cubriendo prácticamente la totalidad del tubo una plancha metalica en contanto con tierra o masa.
Tipo de monitor: en los CRT pueden existir 2 tipos, de apertura de rejilla o de máscara de sombra.
Líneas de tensión: Son unas líneas horizontales, que tienen los monitores de apertura de rejilla para mantener las líneas que permiten mostrar los colores perfectamente alineadas; en 19 pulgadas lo habitual suelen ser 2, aunque también los hay con 3 líneas, algunos monitores pequeños incluso tienen una sola.



Resoluciones:

Resolución de pantalla se denomina a la cantidad de pixels que se pueden ubicar en un determinado modo de pantalla. Estos pixels están a su vez distribuidos entre el total de horizontales y el de verticales.
Todos los monitores pueden trabajar con múltiples modos, pero dependiendo del tamaño del monitor, unos nos serán más útiles que otros:
A nivel general se recomienda lo siguiente:

miércoles, 6 de agosto de 2008

FUENTES DE PC

Tipos de Fuentes

Cuando abrimos el gabinete de la PC, podemos encontrarnos con dos tipos de fuentes: AT o ATX(AT eXtended).

La fuente AT tiene tres tipos de conectores de salida. El primer tipo, del cual hay dos, son los que alimentan la placa madre. Los dos tipos restantes, de los cuales hay una cantidad variable, alimentan a los periféricos no enchufados en un slotde la placa madre, como ser unidades de discos duros, unidades de CD-ROM, disqueteras, etc.La conexión a la placa madre es a través de dos conectores de 6 pines cada uno, los cuales deben ir enchufados de modo que los cables negros de ambos queden unidos en el centro.





La fuente ATX es muy similar a la AT, pero tiene una serie de diferencias, tanto en su funcionamiento como en los voltajes entregados a la placa madre. La fuente ATX consta en realidad de dos partes: una fuente principal, que corresponde a la vieja fuente AT (con algunos agregados), y una auxiliar.





CARACTERÍSTICAS

Las fuentes de alimentación AT, fueron usadas hasta que apareció el Pentium MMX, es en ese momento cuando ya se empezarían a utilizar fuentes de alimentación ATX.
Las características de las fuentes AT, son que sus conectores a placa base varían de los utilizados en las fuentes ATX, y son más peligrosas, ya que la fuente se activa a través de un interruptor, y en ese interruptor hay un voltaje de 220v, con el riesgo que supondría manipular el PC.

Las AT son un tanto rudimentarias electrónicamente hablando, si las comparamos tecnológicamente con las ATXLa fuente ATX, siempre está activa, aunque el ordenador no esté funcionando, siempre está alimentada con una tensión pequeña en estado de espera.Las fuentes ATX dispone de un pulsador conectado a la placa base, y esta se encarga de encender la fuente, esto nos permite el poder realizar conexiones/desconexiones por software.En Fuentes AT, se daba el problema de que existían dos conectores a conectar a placa base, con lo cual podía dar lugar a confusiones y a cortocircuitos, la solución a ello es basarse en un truco muy sencillo, hay que dejar en el centro los cables negros que los dos conectores tienen, así no hay forma posible de equivocarse.

DIFERENCIAS DE FUENTES EN PC

La principal diferencia en el funcionamiento se nota en el interruptor de encendido, que en vez de conectar y desconectar la alimentación de 220VAC, como hace el de la fuente AT, envía una señal a la fuente principal, indicándole que se encienda o apague, permaneciendo siempre encendida la auxiliar, y siempre conectada la alimentación de 220VAC, permitiendo poder realizar conexiones/desconexiones por software.

Hay tres diferencias básicas entre las fuentes de poder AT y ATX
· Tiene una línea de voltaje extra, la de +3.3v
· Las fuentes de poder ATX tienen solo un conector de 20 terminales
· Tiene un alambre de “power-on”, que la fuente sea apagada por software



CONECTOR ATX






CONECTOR AT




VENTAJAS Y DESVENTAJAS


Una de las ventajas es que las fuentes ATX no disponen de un interruptor que enciende/apaga la fuente, si no que se trata de un pulsador conectado a la placa base, y esta se encarga de encender la fuente, esto conlleva pues el poder realizar conexiones/desconexiones por software.



PRECIOS

Fuente de Poder
Fuente de poder ATX 350 W P4 24 Pin

$ 178.60

Fuente de poder ATX 450 W P4 24 Pin caja

$ 227.46

Fuente de poder ATX 630 W P4 24 Pin, 2 ventiladores, 2 conector S-ata


$ 306.65
























































































































FUENTES CONMUTADAS Y LINEALES

Fuente conmutada

Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación . Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (100-500 Kilociclos típicamente) entre corte (abiertos) y saturación (Cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos)y filtrados (Inductores y capacitores)para obtener los voltajesdesalida de corriente continua (CC).


A - Puente rectificador


B - Capacitor de entrada


C - Transformador


D - Bobina del filtro de Salida


E - Capacitores del filtro de Salida



FUNCIONAMIENTO



Rectificador: convierte la alterna en continua. Llaveador: De acuerdo a las órdenes provenientes del generador de pulsos, conduce o bloquea, en alta frecuencia. Filtro: Disminuye (casi elimina) la alterna en la salida, dejándola totalmente continuo. Comparador: Toma una muestra de la salida, y la compara con una referencia. Genera una señal de error, que va al generador de pulsos. Generador de Pulsos: Genera pulsos que irán al llaveador, que serán proporcionales al voltaje de Error disponible en su entrada.
La señal de corriente alterna es rectificada y convertida en pulsos de continua. Estos pulsos son entregados a un llaveador, que conducirá, o bloqueará, en alta frecuencia (típicamente más de 10.000 Hz.).
Esta salida llaveada es filtrada por un filtro capacitivo normal. Como la conmutación (llaveamiento) es en alta frecuencia, el filtrado es fácil.
Se toma una muestra de la tensión de salida. Esta es aplicada a un comparador, en cuya segunda entrada tiene un voltaje de referencia. El comparador saca una señal de error que es proporcional a la diferencia entre la Salida y la Referencia. Esta señal de error es enviada al Generador de Pulsos, de forma a que éste ordene al Llaveador que conduzca más o conduzca menos, según sea necesario.



Comparación entre Fuentes de alimentación conmutadas y lineales
Hay dos tipos principales de fuentes de alimentación reguladas disponibles: Conmutadas y lineales. Las razones por las cuales elegir un tipo o el otro se pueden resumir como sigue.
Tamaño y peso – las fuentes de alimentación lineales utilizan un transformador funcionando a la frecuencia de 50 o 60 hertzios. Este transformador de baja frecuencia es varias veces más grande y más pesado que un transformador correspondiente de fuente conmutada, el cual funciona en frecuencias típicas de 50 kilociclos a 1 megaciclo.La tendencia de diseño es de utilizar frecuencias cada vez mas altas mientras los transistores lo permitan para disminuir el tamaño de los componentes pasivos (capacitores inductores trasnformadores).
Voltaje de la salida – las fuentes de alimentación lineales regulan la salida usando un voltaje más alto en las etapas previas y luego disipando energía como calor para producir un voltaje más bajo, regulado. Esta caída de voltaje es necesaria y no puede ser eliminada mejorando el diseño. Las fuentes conmutadas pueden producir voltajes de salida que son más bajos que el voltaje de entrada, más altos que el voltaje e incluso inversos al voltaje de entrada, haciéndolos versátiles y mejor adaptables a voltajes de entrada variables.
Eficiencia, calor, y energía disipada - Una fuente lineal regula el voltaje o la corriente de la salida disipando el exceso de energía como calor, lo cual es ineficaz. Una fuente conmutada usa la señal de control para variar el ancho de pulso, tomando de la alimentación solamente la energía requerida por la carga. En todas las topologías de fuentes conmutadas, se apagan y se encienden los transistores completamente. Así, idealmente, las fuentes conmutadas son 100% eficientes. El único calor generado se da por las características no ideales de los componentes. Pérdidas en la conmutación en los transistores, resistencia directa de los transistores saturados, resistencia serie equivalente en el inductor y los condensadores, y la caída de voltaje por el rectificador bajan la eficiencia. Sin embargo, optimizando el diseño, la cantidad de energía disipada y calor pueden ser reducidos al mínimo. Un buen diseño puede tener una eficiencia de conversión de 95%. Típicamente 75-85% en fuentes de entre 10-50W.Las fuentes conmutadas mas eficientes utilizan rectificación síncrona con transistores Mosfet saturados en el momento adecuado en vez de diodos.
Complejidad - un regulador lineal consiste en última instancia un transistor de potencia, un CI de regulación de voltaje y un condensador de filtro de ruido. En cambio una fuente conmutada contiene típicamente un CI regulador, uno o varios transistores y diodos de potencia como así también un transformador, inductores, y condensadores de filtro. Múltiples voltajes se pueden generar a partir del mismo núcleo de transformador. Para ello se utiliza el control por ancho de pulso de entrada aunque las diferentes salidas pueden tener dificultades para la regulación de carga. Ambos necesitan una selección cuidadosa de sus transformadores. En las fuentes conmutadas debido al funcionamiento a altas frecuencias las perdidas en las pistas del circuito impreso por inductancia de perdida y las capacidades parásitas llegan a ser importantes.
Interferencia por radiofrecuencia - La corriente en las fuentes conmutadas tiene cambios abruptos , y contiene una proporción grande de componentes espectrales de alta frecuencia. Cables o pistas largas entre los componentes pueden reducir la eficacia de alta frecuencia de los filtros a condensadores en la entrada y salida. Esta corriente de alta frecuencia puede generar interferencia electromagnética indeseable. Filtros EMI y blindajes de RF son necesarios para reducir la interferencia. Las fuentes de alimentación lineales no producen generalmente interferencia, y se utilizan para proveer de energía donde la interferencia de radio no debe ocurrir.
Ruido electrónico en los terminales de salida de fuentes de alimentación lineales baratas con pobre regulación se puede experimentar un voltaje de CA Pequeño “montado” sobre la CC. de dos veces la frecuencia de alimentación (100/120 Ciclos). Esta “ondulación” (Ripple en Inglés) está generalmente en el orden de varios milivoltios, y puede ser suprimido con condensadores de filtro mas grandes o mejores reguladores de voltaje. Este voltaje de CA Pequeño puede causar problemas o interferencias en algunos circuitos; por ejemplo, cámaras fotográficas análogas de seguridad alimentadas con este tipo de fuentes pueden tener la modulación indeseada del brillo y distorsiones en el sonido que produce zumbido audible. Las fuentes de alimentación lineales de calidad suprimirán la ondulación mucho mejor. En cambio las Fuentes conmutadas no exhiben generalmente la ondulación en la frecuencia de la alimentación, sino salidas generalmente más ruidosas a altas frecuencias. El ruido está generalmente relacionado con la frecuencia de la conmutación.
Ruido acústico - Las fuentes de alimentación lineales emiten típicamente un zumbido débil, en la baja frecuencia de alimentación, pero ésta es raramente audible (la vibración de las bobinas y las chapas del núcleo del transformador suelen ser las causas ). Las Fuentes conmutadas con su funcionamiento mucho más alto en frecuencia, no son generalmente audibles por los seres humanos (a menos que tengan un ventilador, como en la mayoría de las computadoras personales). El funcionamiento incorrecto de las fuentes conmutadas puede generar sonidos agudos, ya que genera ruido acústico en la frecuencia del oscilador.
Factor de Potencia las Fuentes lineales tienen bajo factor de potencia porque la energía es obtenida en los picos de voltaje de la línea de alimentación.La corriente en las fuentes conmutadas simples no sigue la forma de onda del voltaje, sino que en forma similar a las fuentes lineales la energía es obtenida solo de la parte mas alta de la onda sinusoidal, por lo que su uso cada vez mas frecuente en computadoras personales y lámparas fluorescentes se constituyo en un problema creciente para la distribución de energía.Existen fuentes conmutadas con una etapa previa de corrección del factor de potencia que reduce grandemente este problema y son de uso obligatorio en algunos países particularmente europeos a partir de determinadas potencias.
Ruido eléctrico sobre la línea de la alimentación principal puede aparecer ruido electrónico de conmutación que puede causar interferencia con equipos de A/V conectados en la misma fase. Las fuentes de alimentación lineares raramente presentan este efecto. Las fuentes conmutadas bien diseñadas poseen filtros a la entrada que minimizan la interferencia causada en la línea de alimentación principal.

martes, 5 de agosto de 2008

SOLDADURA

La Soldadura es un metal fundido que une dos piezas de metal, de la misma manera que realiza la operación de derretir una aleación para unir dos metales, pero diferente de cuando se soldan dos piezas de metal para que se unan entre si formando una unión soldada.
En la
industria de la electrónica, la aleación de estaño y plomo es la más utilizada, aunque existen otras aleaciones, esta combinación da los mejores resultados. La mezcla de estos dos elementos crea un suceso poco comun. Cada elemento tiene un punto elevado de fundición, pero al mezclarse producen una aleación con un punto menor de fundición que cualquiera de los elementos para esto debemos de conocer las bases para soldar. Sin este conocimiento
es difícil visualizar que ocurre al hacer una unión de soldadura y los efectos de las diferentes partes del proceso.


Teoria de Soldadura

Antes de hacer una union, es necesario que la soldadura "moje" los metales básicos o metales base que formaran la unión. Este es el factor mas importante al soldar. Al soldar se forma una unión intermolecular entre la soldadura y el metal. Las moleculas de soldadura penetran la estructura del metal base para formar una extructura sólida, totalmemte metálica.




En Electrónica se suelen utilizar soldadores de potencia reducida, ya que generalmente se trata de trabajos delicados. En fontanería, sin embargo, para soldar tubos se usan soldadores de más potencia y candilejas, así como otros sistemas de soldadura.
Se trata de un útil que tiene un enorme campo de aplicación, ya sea para realizar nuevos montajes o para hacer reparaciones. El soldador debe permitir las operaciones de soldadura con estaño correspondientes a la unión de dos o más conductores, o conductores con elementos del equipo. Debido a su frecuente empleo, el soldador deberá presentar, entre otras características, una gran seguridad de funcionamiento y durabilidad.
En general, se trata de una masa de cobre (punta), que se calienta indirectamente por una resistencia eléctrica conectada a una toma de energía eléctrica (generalmente el enchufe de 220v). Los tipos que se encuentran generalmente en el mercado pueden clasificarse en soldadores comunes o "de lápiz" y soldadores de pistola.

Tipos de soldadores

Éste es el clásico soldador de tipo lápiz, de 30w. Su calentamiento es permanente y posee una alta inercia térmica. Tanto en el momento de la soldadura como en las pausas de esta labor, el soldador permanece conectado a la corriente eléctrica. Resulta adecuado para trabajos repetitivos y numerosos.



El soldador de pistola. La punta se calienta por el efecto de una gran corriente que pasa por ella (el abultado mango lleva dentro un transformador que la produce). Resulta útil para trabajos esporádicos ya que se calienta instantáneamente. No se usa mucho en electrónica porque la punta no suele resultar lo bastante fina y precisa.


Tipos de soportes

Ya que el soldador mantiene la punta caliente (a unos 250~300ºC), se hace necesario el uso de un soporte donde dejarlo durante el tiempo que no se usa, para evitar quemar la mesa de trabajo. Aquí se ven algunos ejemplos:


1. Soporte típico para soldadores de poca potencia. Tiene esponja.
2. Soporte JBC que permite colocar el soldador de dos formas distintas. Tiene
esponja.
3. El soporte más sencillo. Puede construirse con un trozo de chapa y una tabla
de madera.
4. Soldador con todas las puntas que se le pueden acoplar: punta fina, punta
gruesa, puna para desoldar circuitos integrados e incluso accesorio para