jueves, 11 de septiembre de 2008

TECNOLOGIA OLED

Un diodo orgánico de emisión de luz, también conocido como OLED (acrónimo del inglés: Organic Light-Emitting Diode), es un diodo que se basa en una capa electroluminiscente formada por una película de componentes orgánicos que reaccionan, a una determinada estimulación eléctrica, generando y emitiendo luz por sí mismos.
Existen muchas tecnologías OLED diferentes, tantas como la gran diversidad de estructuras (y materiales) que se han podido idear (e implementar) para contener y mantener la capa electroluminiscente, así como según el tipo de componentes orgánicos utilizados.
Las principales ventajas de los OLEDs son: menor coste, mayor escalabilidad, mayor rango de colores, más contrastes y brillos, mayor ángulo de visión, menor consumo y, en algunas tecnologías, flexibilidad. Pero la degradación de los materiales OLED han limitado su uso por el momento. Actualmente se está investigando para dar solución a los problemas derivados, hecho que hará de los OLEDs una tecnología que puede reemplazar la actual hegemonía de las pantallas LCD (TFT) y de la pantalla de plasma.
Por todo ello, OLED puede y podrá ser usado en todo tipo de aplicaciones: pantallas de televisión, pantalla de ordenador, pantallas de dispositivos portátiles (teléfonos móviles, PDAs, reproductores MP3...), indicadores de información o de aviso, etc. con formatos que bajo cualquier diseño irán desde unas dimensiones pequeñas (2") hasta enormes tamaños (equivalentes a los que se están consiguiendo con LCD). Mediante los OLEDs también se pueden crear grandes o pequeños carteles de publicidad, así como fuentes de luz para iluminar espacios generales. Además, algunas tecnologías OLED tienen la capacidad de tener una estructura flexible, lo que ya ha dado lugar a desarrollar pantallas plegables, y en el futuro quizá


Estructura básica
Un OLED está compuesto por dos finas capas orgánicas: capa de emisión y capa de conducción, que a la vez están comprendidas entre una fina película que hace de terminal ánodo y otra igual que hace de cátodo. En general estas capas están hechas de moléculas o polímeros que conducen la electricidad. Sus niveles de conductividad eléctrica van desde los niveles aisladores hasta los conductores, y por ello se llaman semiconductores orgánicos (ver polímero semiconductor).
La elección de los materiales orgánicos y la estructura de las capas determinan las características de funcionamiento del dispositivo: color emitido, tiempo de vida y eficiencia energética.



Principio de funcionamiento
Se aplica
voltaje a través del OLED de manera que el ánodo es positivo respecto del cátodo. Esto causa una corriente de electrones que fluye en este sentido. Así, el cátodo da electrones a la capa de emisión y el ánodo los sustrae de la capa de conducción.
Seguidamente, la capa de emisión comienza a cargarse negativamente (por exceso de electrones), mientras que la capa de conducción se carga con huecos (por carencia de electrones). Las fuerzas electroestáticas atraen a los electrones y a los huecos, los unos con los otros, y se recombinan (en el sentido inverso de la carga no habría recombinación y el dispositivo no funcionaría). Esto sucede más cercanamente a la capa de emisión, porque en los semiconductores orgánicos los huecos son más movidos que los electrones (no ocurre así en los semiconductores inorgánicos).
La recombinación es el fenómeno en el que un átomo atrapa un electrón. Dicho electrón pasa de una capa energética mayor a otra menor, liberándose una energía igual a la diferencia entre energías inicial y final, en forma de
fotón
.
La recombinación causa una emisión de
radiación a una frecuencia que está en la región visible, y se observa un punto de luz en un color determinado. La suma de muchas de estas recombinaciones que ocurren de forma simultánea es lo que llamaríamos imagen.

Principio de funcionamiento de OLED: 1. Cátodo (-), 2. Capa de emisión, 3. Emisión de radiación (luz), 4 . Capa de conducción, 5. Ánodo (+)

Principales ventajas
Los OLEDs ofrecen muchas ventajas en comparación con los LCDs, LEDs y pantallas de plasma.
Más delgados y flexibles. Por una parte, las capas orgánicas de polímeros o moléculas de los OLEDs son más delgadas, luminosas y mucho más flexibles que las capas cristalinas de un LED o LCD. Por otra parte, en algunas tecnologías el sustrato de impresión de los OLEDs puede ser el plástico, que ofrece flexibilidad frente a la rigidez del cristal que da soporte a los LCDs o pantallas de plasma.
Más económicos, en el futuro. En general, los elementos orgánicos y los sustratos de plástico serán mucho más económicos. También, los procesos de fabricación de OLEDs pueden utilizar conocidas tecnologías de impresión de tinta (en inglés, conocida como inkjet), hecho que disminuirá los costes de producción.
Más brillo y contrastes. Los píxeles de OLED emiten luz directamente. Por eso, respecto los LCDs posibilitan un rango más grande de colores, más brillo y contrastes, y más ángulo de visión.
Menos consumo de energía. Los OLEDs no necesitan la tecnología backlight, es decir, un elemento OLED apagado realmente no produce luz y no consume energía, a diferencia de los LCDs que no pueden mostrar un verdadero “negro” y lo componen con luz consumiendo energía continuamente. Así, los OLEDs muestran imágenes con menos potencia de luz, y cuando son alimentados desde una batería pueden operar largamente con la misma carga.
Más escalabilidad y nuevas aplicaciones. La capacidad futura de poder escalar las pantallas a grandes dimensiones hasta ahora ya conseguidas por los LCDs y, sobre todo, poder enrollar y doblar las pantallas en algunas de las tecnologías OLED que lo permiten, abre las puertas a todo un mundo de nuevas aplicaciones que están por llegar.

Desventajas y problemas actuales
Tiempos de vida cortos. Las capas OLED verdes y rojas tienen largos tiempos de vida (10.000 a 40.000 horas), pero actualmente las azules tienen mucha menos duración (sólo 1.000 horas).
Proceso de fabricación caro. Actualmente la mayoría de tecnologías OLED están en proceso de investigación, y los procesos de fabricación (sobre todo inicialmente) son económicamente elevados, a no ser que se apueste por un diseño que se utilice en economías de escala.
Agua. El
agua puede fácilmente estropear permanentemente los OLEDs.
Impacto medioambiental. Los componentes orgánicos (moléculas y polímeros) se ha visto que son difíciles de reciclar (alto coste, complejas técnicas). Ello puede causar un impacto al
medio ambiente muy negativo en el futuro.
Las pantallas están sufriendo desde hace tiempo un proceso de adelgazamiento que parece no tener fin. Los monitores de plasma y LCD no han acabado aún de sustituir plenamente a los voluminosos televisores de tubo y ya tenemos a la vista la próxima revolución, las ultrafinas pantallas OLED. (Sony empezará a comercializar estas navidades una televisión que no supera los tres milímetros de grosor basada en esta tecnología.)
La tecnología OLED, basada en la emisión de luz a partir de un diodo orgánico que reacciona a una corriente eléctrica, es según los expertos más eficiente, y permite construir pantallas más ligeras y delgadas que las actuales. El problema, por ahora, parece ser la fabricación de monitores de gran tamaño, como los que están disponibles en LCD y plasma.
El modelo que Sony empezará a comercializar en navidades en Japón, llamado XEL-1, tendrá un tamaño de 11 pulgadas que se venderá por 200.000 yenes (1.218 euros). Con ella, la compañía japonesa desea recuperar el liderazgo tecnológico del sector. Actualmente es el segundo fabricante de pantallas de cristal líquido por número de ventas, por detrás de la coreana Samsung.
Una de las grandes ventajas de las pantallas OLED es que, a diferencia de las pantallas LCD, no necesitan retroiluminación, lo que permite reducir su tamaño aún más. Además ofrecen mejoras en "calidad de imagen, ángulo de visión, tiempo de respuesta y un mayor ratio de contraste," según un informe de la firma DisplaySearch.
El mismo estudio señala que el mercado de pantallas de diodos orgánicos emisores de luz (OLED por sus siglas en inglés) está floreciendo y se prevé que sus ventas crezcan un 117 por ciento en el próximo año, a medida que más productos clave como teléfonos móviles adoptan la tecnología. Aún así, el problema del tamaño de la pantalla sigue presente y frenará la extensión de OLED. "No creo que vaya a sustituir al LCD de la noche a la mañana", ha declarado el presidente ejecutivo de Sony, Ryoji Chubachi, que no obstante insiste en el "gran potencial de esta tecnología".
Sony no es el único fabricante que trabaja con lo diodos orgánicos aplicados a la televisión. Toshiba ha anunciado que empezará a colocar en las tiendas televisiones OLED en el año 2009.

TECNOLOGIA SED

El Panel SED es un tipo de panel visualizador para pantallas planas caracterizado por usar la tecnología de las pantallas de tubo tradicionales (CRT) para cada uno de los puntos (píxeles) mostrados en pantalla. Cada pixel es un micro tubo de rayos catódicos. En principio, este tipo de paneles ofrece las ventajas de los tubos de imagen y los TFT, sin los defectos de ambos. De esta manera se consigue mejorar el contraste y el ángulo de visión sin aumentar el consumo. También permite ampliar las dimensiones de la pantalla con respecto a las pantallas de tecnología TFT o las de plasma. El proyecto ha sido desarrollado conjuntamente por Canon y Toshiba.



Objetivos y desarrollo

El panel SED (Surface-conduction Electron-emitter Display o panel de emisiones de electrones dirigidos) fue pensado y creado para mejorar la tecnología con la que cuentan los televisores planos. Este tipo de panel pretende cubrir las necesidades requeridas para la alta definición en todos los campos relacionados con la imagen digital (desde su aplicación en televisores, como en la aplicación para la fotografía y películas).
El proyecto empezó a mediados de los años 80 por Canon, y más tarde, en 1999 tuvo un gran apoyo por parte Toshiba, multinacional dedicada a la electrónica. Esta unión plantea la creación de un proyecto común bajo un mismo nombre, de esta manera aparece esta tecnología con el nombre de SED Inc. Además, el desarrollo de esta tecnología se ha acelerado vertiginosamente con perspectivas para poderla comercializar en el 2007 (previsión de venta en el mercado sin confirmar). La compañía prevé pantallas que soporten más de 40 pulgadas.

Tecnología

La tecnología utilizada para estos paneles aún está en fase de desarrollo y no hay especificaciones de cómo va a funcionar exactamente. El principio radica en el de las televisiones normales de Tubo de Rayos Catódicos, (CRT). En los CRT, un haz de electrones es focalizado hacia cada píxel para iluminarlo según convenga. En la tecnología SED este procedimiento se "simplifica" porque se utiliza un haz de electrones individual para cada píxel, el cual iluminará posteriormente el fósforo encargado de producir la luz que hará brillar los colores primarios RGB de cada píxel. Gracias a esto no habrá que dirigir y focalizar un único rayo de electrones sobre una matriz de píxeles, sino que hay que montar millones de rayos de electrones sobre un panel SED. Uno para cada píxel.
Así pues, cada píxel tendrá su propio cañón de electrones. Este cañón de electrones se forma a partir de dos electrodos muy pequeños (microscópicos) separados por unos nanómetros de distancia. A estos electrodos se les aplica una tensión de 16 voltios que "atraviesa" los nanómetros que separa los electrodos. Fruto de este "salto" entre electrodos, la corriente genera electrones que salen disparados hacia todas las direcciones. Para canalizar estos electrones hasta el fósforo que lo hará brillar se utiliza un campo eléctrico de 10 Kilovoltios hacia la dirección donde esté el fósforo. De esta manera se genera un haz de electrones unidireccional que impacta sobre el fósforo perteneciente a un determinado píxel.
Para formar una imagen entera se necesitan cientos de miles de píxeles (millones en alta definición). Por lo tanto actualmente se está estudiando la colocación de los cañones de electrones en un reducido espacio, sin que ello signifique una pérdida de funcionalidad por parte de dichos cañones o una pérdida de homogeneidad en la imagen.

Características y ventajas

Al utilizar una tecnología tan parecida a la de CRT, todas las características y logros alcanzados con dicha tecnología podrán ser aplicados a las pantallas SED. Los televisores que utilicen paneles SED tendrán una calidad de imagen igual a todos los televisores CRT, consiguiendo mejorar de una manera excelente las deficiencias de los aparatos de pantalla plana LCD, Plasma o TFT.
El color, el contraste y la luminosidad serán iguales o mejores que los CRT.
No habrá ningún problema para el ángulo de visión de la pantalla (De este modo no habrá cambios de color y brillo desde diferentes ángulos).
Su consumo rebaja 2/3 la potencia utilizada en un CRT. 1/3 con respecto a la utilizada en los LCD.
Tolerará temperaturas desde los -40º a los +85º.
El proceso de fabricación es más sencillo que el de las pantallas LCD.
No habrá problemas con el refresco de la imagen y su fluidez ya que utilizarán la misma velocidad de refresco que un televisor CRT normal.
El color negro alcanzará mayor calidad.

Futuro y comercialización
Se espera su comercialización a mediados o finales del año 2007. Sus bajos costes de fabricación y su gran calidad harán que ésta sea una tecnología muy competitiva con todas las gamas de televisores planos. Además, se está mejorando notablemente la longitud de las pantallas, las cuales soportarán medidas superiores a la 40 pulgadas.

TECNOLOGIA PLASMA

Plasma Display Panel – PDP) es un tipo de pantalla plana habitualmente usada para grandes TV (alrededor de 37 pulgadas o 940 mm.). Consta de muchas celdas diminutas situadas entre dos paneles de cristal que contienen una mezcla de gases nobles (neon y xenon). El gas en las celdas Características generales

Composición de una pantalla de plasma
Las pantallas de plasma son brillantes (1000 lux o más por módulo), tienen un amplia gama de colores y pueden fabricarse en tamaños bastante grandes, hasta 262 cm de diagonal. Tienen una luminancia muy baja a nivel de negros, creando un negro que resulta más deseable para ver películas. Esta pantalla sólo tiene cerca de 6 cm de grosor y su tamaño total (incluyendo la electrónica) es menor de 10 cm. Los plasmas usan tanta energía por metro cuadrado como los televisores CRT o AMLCD. El consumo eléctrico puede variar en gran medida dependiendo de qué se esté viendo en él. Las escenas brillantes (como un partido de fútbol) necesitarán una mayor energía que las escenas oscuras (como una escena nocturna de una película). Las medidas nominales indican 400 vatios para una pantalla de 50 pulgadas. Los modelos relativamente recientes consumen entre 220 y 310 vatios para televisores de 50 pulgadas cuando se está utilizando en modo cine. La mayoría de las pantallas están configuradas con el modo “tienda” por defecto y consumen como mínimo el doble de energía que con una configuración más cómoda para el hogar.
El tiempo de vida de la última generación de pantallas de plasma está estimado en unas 100.000 horas (o 30 años a 8 horas de uso por día) de tiempo real de visionado. En concreto, éste es el tiempo de vida medio estimado para la pantalla, el momento en el que la imagen se ha degradado hasta la mitad de su brillo original. Se puede seguir usando pero se considera el final de la vida funcional del aparato.
Los competidores incluyen a LCD, CRT, OLED, AMLCD, DLP, SED-tv, etc. La principal ventaja de la tecnología del plasma es que pantallas muy grandes pueden ser fabricadas usando materiales extremadamente delgados. Ya que cada píxel es iluminado individualmente, la imagen es muy brillante y posee un gran ángulo de visión.


Detalles funcionales
Los gases xenon y neon en una televisión de plasma están contenidos en cientos de miles de celdas diminutas entre dos pantallas de cristal. Los electrodos también se encuentran “emparedados” entre los dos cristales, en la parte frontal y posterior de las celdas. Ciertos electrodos se ubican detrás de las celdas, a lo largo del panel de cristal trasero y otros electrodos, que están rodeados por un material aislante dieléctrico y cubiertos por una capa protectora de óxido de magnesio, están ubicados en frente de la celda, a lo largo del panel de cristal frontal. El circuito carga los electrodos que se cruzan en cada celda creando diferencia de voltaje entre la parte trasera y la frontal y provocan que el gas se ionice y forme el plasma. Posteriormente, cuando los iones del gas corren hacia los electrodos y colisionan se emiten fotones.
En una pantalla monocroma es posible mantener el estado ionizado mediante la aplicación de un voltaje de bajo nivel a todos los electrodos verticales y horizontales, incluso cuando el voltaje iónico ha sido retirado. Para borrar una celda se elimina todo el voltaje de un par de electrodos. Este tipo de pantallas tiene memoria inherente y no usa fósforos. Se añade una pequeña cantidad de nitrógeno al neón para incrementar la histéresis.
En las pantallas a color, la parte trasera de cada celda es cubierta con un fósforo. Los fotones ultravioletas emitidos por el plasma excitan esos fósforos y emiten luz de colores. La operación de cada una de las celdas se puede comparar con la de una lámpara fluorescente.
Cada pixel está compuesto por tres celdas separadas (subpixeles), cada una con fósforos de diferentes colores. Un subpixel tiene un fósforo con luz de color rojo, otro subpixel tiene un fósforo con luz de color verde y el otro subpixel lo tiene con luz de color azul. Estos colores se mezclan para crear el color final del píxel de forma análoga a como se hace en los “triads” de las máscaras de sombras de los CRT. Variando los pulsos de la corriente que fluye a través de las diferentes celdas miles de veces por segundo, el sistema de control puede incrementar o reducir la intensidad del color de cada subpixel para crear billones de combinaciones diferentes de rojo, verde y azul. De esta forma, el sistema de control es capaz de producir la mayoría de los colores visibles. Las pantallas de plasma usan los mismos fósforos que los CRTs, lo cual explica la extremadamente precisa reproducción del color.

Ratio de contraste
El ratio de contraste es la diferencia entre la parte más brillante de la imagen y la más oscura, medida en pasos discretos, en un momento dado. Generalmente, cuanto más alto es el ratio de contraste más realista es la imagen. Los ratios de contraste para pantallas de plasma se suelen anunciar de 15.000:1 a 30.000:1. Esta es una ventaja importante del plasma sobre otras tecnologías de visualización. Aunque no hay ningún tipo de directriz en la industria acerca de cómo informar sobre el ratio de contraste, la mayoría de los fabricantes siguen o bien el estándar ANSI o bien realizan tests “full-on-full-off”. El estándar ANSI usa un patrón para el test de comprobación a través del cuál los negros más oscuros y los blancos más luminosos son medidos simultáneamente, logrando la clasificación más realista y exacta. Por el otro lado, un test “full-on-full-off” mide el ratio usando una pantalla de negro puro y otra de blanco puro, lo que consigue los valores más altos pero no representa un escenario de visualización típico. Los fabricantes pueden mejorar artificialmente el ratio de contraste obtenido incrementando el contraste y el brillo para lograr los valores más altos en los test. Sin embargo, un ratio de contraste generado mediante este método sería engañoso ya que la imagen sería esencialmente imposible de ver con esa configuración. Se suele decir a menudo que las pantallas de plasma tienen mejores niveles de negros (y ratios de contraste), aunque tanto las pantallas de plasma como las LCD tienen sus propios desafíos tecnológicos. Cada celda de una pantalla de plasma debe ser precargada para iluminarla (de otra forma la celda no respondería lo suficientemente rápido) y esa precarga conlleva la posibilidad de que las celdas no logren el negro verdadero. Algunos fabricantes han trabajado duro para reducir la precarga y el brillo de fondo asociado hasta el punto en el que los niveles de negro de los plasmas modernos comienzan a rivalizar con los CRT. Con la tecnología LCD, los pixeles negros son generados por un método de polarización de la luz y son incapaces de ocultar completamente la luz de fondo subyacente.
Un defecto de la tecnología de plasma es que si se utiliza habitualmente la pantalla al nivel máximo de brillo se reduce significativamente el tiempo de vida del aparato. Por este motivo, muchos consumidores usan una configuración de brillo por debajo del máximo, pero que todavía sigue siendo más brillante que las pantallas CRT.

Efecto de pantalla quemada
En las pantallas electrónicas basadas en fósforo (incluyendo televisiones de rayos catódicos y de plasma), una exposición prolongada de una imagen estática durante mucho tiempo puede provocar que los objetos que se muestren en ella queden marcados en la pantalla durante un tiempo. Esto es debido al hecho de que los compuestos de fósforo que emiten la luz pierden su luminosidad con el uso. Como resultado, cuando ciertas áreas de la pantalla son usadas más frecuentemente que otras, a lo largo del tiempo las áreas de baja luminosidad se vuelven visibles a simple vista, esto se conoce como pantalla quemada. Un síntoma muy común es que la calidad de la imagen disminuye gradualmente conforme a las variaciones de luminosidad que tienen lugar a lo largo del tiempo, resultando una imagen con aspecto “embarrado”
Las pantallas LCD por el contrario no suelen sufrir el denominado “efecto fantasma” típico de las pantallas CRT y plasma.

Comparativa entre Plasma y LCD se convierte eléctricamente en plasma el cual provoca que los fósforos emitan luz.


continuación se muestra una pequeña comparativa entre las dos tecnologías:

Ventajas de las PLASMA frente a las LCD
Mayor contraste, lo que se traduce en una mayor capacidad para reproducir el color negro y la escala completa de grises.
Mayor angulo de visión
Ausencia de tiempo de respuesta, lo que evita el efecto "estela" o "efecto fantasma" que se produce en ciertos LCD debido a altos tiempos de refresco (mayores a 12ms).
No contiene mercurio, a diferencia de las pantallas LCD.
Colores más suaves al ojo humano.
Mayor numero de colores y más reales.

Ventajas de las LCD frente a las PLASMA

El coste de fabricación de los monitores de plasma es superior al de las pantallas LCD, este coste de fabricación no afecta tanto al PVP como al margen de ganancia de las tiendas, de ahí que muchas veces las grandes superficies no suelan trabajar con ellas, en beneficio de los lcds.
Consumo eléctrico: una televisión con pantalla de plasma grande puede consumir hasta un 30% más de electricidad que una televisión LCD.
Efecto de "pantalla quemada" en plasma: si la pantalla permanece encendida durante mucho tiempo mostrando imágenes estáticas (como logotipos o encabezados de noticias) es posible que la imagen quede fija o sobreescrita en la pantalla. Aunque este efecto está solucionado desde la octava generación. Actualmente vamos por la generación décimo primera y este efecto ya no se reproduce).

LCD

Una pantalla de cristal líquido o LCD (acrónimo del inglés Liquid crystal display) es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora. A menudo se utiliza en dispositivos electrónicos de pilas, ya que utiliza cantidades muy pequeñas de energía eléctrica.



Características
Cada píxel de un LCD tipicamente consiste de una capa de moléculas alineadas entre dos electrodos transparentes, y dos filtros de polarización, los ejes de transmisión de cada uno estan (en la mayoría de los casos) perpendiculares entre sí. Sin cristal líquido entre el filtro polarizante, la luz que pasa por el primer filtro sería bloqueada por el segundo (cruzando) polarizador.
La superficie de los electrodos que están en contacto con los materiales de cristal líquido es tratada a fin de ajustar las moléculas de cristal líquido en una dirección en particular. Este tratamiento normalmente consiste en una fina capa de polímero que es unidireccionalmente frotada utilizando, por ejemplo, un paño. La dirección de la alineación de cristal líquido se define por la dirección de frotación.
Antes de la aplicación de un campo eléctrico, la orientación de las moléculas de cristal líquido está determinada por la adaptación a las superficies. En un dispositivo twisted nematic,TN, (unos de los dispositivos más comunes entre los de cristal líquido), las direcciones de alineación de la superficie de los dos electrodos son perpendiculares entre sí, y así se organizan las moléculas en una estructura helicoidal, o retorcida. Debido a que el material es de cristal líquido birefringent, la luz que pasa a través de un filtro polarizante se gira por la hélice de cristal líquido que pasa a través de la capa de cristal líquido, lo que le permite pasar por el segundo filtro polarizado. La mitad de la luz incidente es absorbida por el primer filtro polarizante, pero por lo demás todo el montaje es transparente.
Cuando se aplica un voltaje a través de los electrodos, una tuerca ajusta las moléculas de cristal líquido paralelas al campo eléctrico, que distorsiona la estructura helicoidal (esto se puede resistir gracias a las fuerzas elásticas desde que las moléculas están limitadas a las superficies). Esto reduce la rotación de la polarización de la luz incidente, y el dispositivo aparece gris. Si la tensión aplicada es lo suficientemente grande, las moléculas de cristal líquido en el centro de la capa son casi completamente desenrolladas y la polarización de la luz incidente no es rotada ya que pasa a través de la capa de cristal líquido. Esta luz será principalmente polarizada perpendicular al segundo filtro, y por eso será bloqueada y el pixel aparecerá negro. Por el control de la tensión aplicada a través de la capa de cristal líquido en cada píxel, la luz se puede permitir pasar a través de distintas cantidades, constituyendose los diferentes tonos de gris.
FUNCIONAMIENTO
El funcionamiento
de estas pantallas se fundamenta en la utilización de sustancias que comparten propiedades de sólidos y líquidos a la vez. Cuando un rayo de luz atraviesa una partícula de estas sustancias tiene necesariamente que seguir el espacio vacío que hay entre sus moléculas -como lo haría al atravesar un cristal sólido- pero a cada una de estas partículas se le puede aplicar una corriente eléctrica que cambie su polarización dejando pasar la luz o no. Una pantalla LCD está formada por dos filtros polarizados colocados perpendicularmente entre sí de maner que al aplicar una corriente eléctrica al segundo de ellos dejaremos pasar o no la luz que ha atravesado el primero de ellos. Para conseguir el color es necesario aplicar tres filtros más para cada uno de los colores básicos -rojo, verde y azul- y para la reproducción de varias tonalidades de color, se deben aplicar diferentes niveles de brillo intermedios entre luz y no-luz, lo cual se consigue con variaciones en el voltaje que se aplica a los filtros.Las ventajas de este tipo de pantallas son su menor tamaño, el bajo consumo -por eso se utilizan en los portátiles- y la desaparición de los problemas de parpadeo y geometría de las pantallas normales tubo de rayos catódicos.
Las desventajas son su coste sensiblemente superior a los monitores convencionales, el menor ángulo de visión -hay que mirarlas de frente-, la menor velocidad de refresco y la pérdida en la gama de colores por lo que no son aptas para trabajos de diseño gráfico.A la hora de comprar una de comprar una de estas pantallas tendremos que fijarnos, sobre todo, en estas características: la resolución máxima, que nos vendrá dada por el número de celdas de cristal líquido realmente existentes en la pantalla.

Especificaciones
Importantes factores a considerar al evaluar un monitor LCD:
Resolución: El tamaño horizontal y vertical expresadas en píxeles (por ejemplo, 1024x768). A diferencia de los monitores CRT, las pantallas LCD tienen una resolución de soporte nativo para mostrar mejor efecto.
Ancho de punto: La distancia entre los centros de dos pixeles adyacentes. Cuanto menor sea el ancho de punto, menor granularidad en la imagen. El ancho de punto puede ser el mismo tanto vertical como horizontal, o diferentes (menos común).
Tamaño: El tamaño de un panel LCD se mide sobre la diagonal (más concretamente, conocida como área de visualización activa).
Tiempo de respuesta: El tiempo mínimo necesario para cambiar el color de un pixel o brillo. El tiempo de respuesta también se divide en ascenso y caída de tiempo.
Tipo de Matriz: activa o pasiva.
Ángulo de visión: más concretamente, conocida como visualización de la dirección.
Soporte de color: ¿Cuántos tipos de colores son soportados?, más conocida como gama de colores. Brillo: La cantidad de luz emitida desde la pantalla, también se conoce como luminosidad.
Contraste: La relación de la intensidad entre la más brillante y la más oscura.
Aspecto: La proporción de la anchura y la altura (por ejemplo, 4:3, 16:9 y 16:10).
Puertos de entrada: entre los que se encuentran DVI, VGA, LVDS, o incluso S - Video y HDMI.



Matrices activas y pasivas dirigidas a LCDs
Las pantallas LCD con un pequeño número de sectores, tales como los que se utilizan en relojes digitales y calculadoras de bolsillo, tienen contactos eléctricos individuales para cada segmento. Un circuito externo dedicado suministra una carga eléctrica para el control de cada segmento. Esta estructura es difícil de visualizar para algunos dispositivos de visualización.
Las pequeñas pantallas monocromo como las que se encuentran en los organizadores personales,o viejas pantallas de ordenadores portátiles tienen una estructura de matriz pasiva donde emplean tecnologías como la super-twisted nematic (STN) o la de doble capa STN (DSTN) , (DSTN corrige el problema del cambio de color de STN), y la STN de color (CSTN) (una tecnología donde el color se añade usando un filtro de color interno). Cada fila o columna de la pantalla tiene un solo circuito eléctrico. Los pixeles se dirigen a la vez por direcciones de fila y de columna. Este tipo de pantalla se denomina matriz pasiva–dirigida porque el pixel debe conservar su estado entre los períodos de refresco sin beneficiarse de una carga eléctrica constante. A medida que el número de píxeles (y, en consecuencia, columnas y filas) se incrementa, este tipo de pantalla se vuelve menos apropiada. Tiempos de respuesta muy lentos y un contraste bastante pobre son típicos en las matrices pasivas dirigidas a LCDs.
En dispositivos de color de alta resolución como los modernos monitores LCD y televisores utilizan una estructura de matriz activa. Una matriz de thin-film transistors (TFTs) se agrega a la polarización y a los filtros de color. Cada píxel tiene su propio transistor dedicado, que permitirá a cada línea de la columna acceder a un píxel. Cuando una línea de fila está activada, todas las líneas de la columna están conectadas a una fila de píxeles y una correcta tensión de alimentación es impulsada a todas las líneas de la columna. Cuando la línea de fila se desactiva, la siguiente línea de fila es activada. Todas las líneas de la fila se activan secuencialmente durante una operación de actualización.La matriz activa está dirigida a dispositivos con un mayor brillo y tamaño que a los que se dirige la matriz pasiva (dirigida a dispositivos de pequeño tamaño, y, en general, que tienen tiempos de respuesta más rápidos, produciendo imágenes mucho mejores).
Inconvenientes
La tecnología LCD aún tiene algunos inconvenientes en comparación con otras tecnologías de visualización:
Aunque los CRTs sean capaces de mostrar múltiples resoluciones de vídeo sin introducir artefactos, los LCDs producen imágenes nítidas sólo en su "resolución nativa", y, a veces, en las fracciones de la resolución original. Al intentar ejecutar paneles LCD a resoluciones no nativas por lo general los resultados en el panel de la escala de la imagen, introducen emborronamiento de la imagen o bloqueos y, en general, es susceptible a varios tipos de HDTV borrosa. Muchos LCDs no son capaces de mostrar modos de pantalla de baja resolución (por ejemplo, 320x200), debido a estas limitaciones de escala.
Aunque los LCDs suelen tener más imágenes vibrantes y mejor contraste "del mundo real" (la capacidad de mantener el contraste y la variación de color en ambientes luminosos) que CRTs, tienen menor contraste que los CRTs en términos de la profundidad de los negros. El contraste es la diferencia entre un encendido completo (en blanco) y la desactivación de píxeles (negro), y los LCDs pueden tener "sangrado de luz de fondo" donde la luz (por lo general, visto desde de las esquinas de la pantalla)se filtra y las fugas de negro se convierten en gris. En diciembre de 2007, los mejores LCDs pueden acercarse al contraste de las pantallas de plasma en términos de entrega de profundidad de negro, pero la mayoría de LCDs siguen a la zaga.
Los LCDs suelen tener tiempos de respuesta más lentos que sus correspondientes de plasma y CRT, en especial las viejas pantallas, creando imágenes fantasmas cuando las imágenes se cargaban rápidamente. Por ejemplo, cuando se desplaza el ratón rápidamente en una pantalla LCD, múltiples cursores pueden ser vistos.
Algunas pantallas LCD tienen importantes aportaciones de retraso. Si el retraso es lo suficientemente grande, esa pantalla puede ser inadecuada para operaciones de ratón rápidas y precisas (CAD, juegos FPS) en comparación con los monitores CRT o LCD, pequeños y con insignificantes cantidades de retraso de entrada. Cortos restrasos son a veces puestos de relieve en la comercialización.
Los paneles LCD tienden a tener un ángulo de visión limitado en relación con las CRTs y las pantallas de plasma. Esto reduce el número de personas que pueden cómodamente ver la misma imagen - las pantallas de ordenadores portátiles son un excelente ejemplo. Así, esta falta de radiación es lo que da a las LCDs su reducido consumo de energía en comparación con las pantallas de plasma y CRTs. Si bien los ángulos de visión han mejorado al punto de que es poco frecuente que los colores sean totalmente incorrectos en el uso normal, a distancias típicas de uso de un ordenador los LCDs todavía permiten pequeños cambios en la postura del usuario, e incluso diferentes posiciones entre sus ojos producen una notable distorsión de colores, incluso para los mejores LCDs del mercado.
Los monitores LCD tienden a ser más frágiles que sus correspondientes CRTs. La pantalla puede ser especialmente vulnerable debido a la falta de un grueso cristal protector como en los monitores CRT.
Los píxeles muertos ocurren frecuentemente y pocos fabricantes reemplazan las pantallas con píxeles muertos de forma gratuita.
Las bandas horizontales y / o verticales son un problema en algunas pantallas de LCD. Este defecto se produce como parte del proceso de fabricación, y no puede ser reparado (fuera de la sustitución total de la pantalla). Las bandas pueden variar considerablemente incluso entre las pantallas LCD de la misma marca y modelo. El grado es determinado por la fabricación de procedimientos de control de calidad.